Гидроэнергетические ресурсы. Гидроэнергетические ресурсы россии · энергии в оборудовании

27.12.2023 Инвестиции

ГИДРОЭНЕРГЕТИКА И ДРУГИЕ ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Содержание лекции:
17.1. Гидроэнергетические ресурсы
17.2. Типы гидроэнергетических установок
17.3. Основные схемы использования водной энергии
17.4. Регулирование стока реки водохранилищем
17.5. Гидроэлектростанции и их энергетическое оборудование
17.6. Мощность ГЭС и выработка энергии
17.7. Гидротехнические сооружения ГЭС
17.8. Гидроаккумулирующие электростанции
17.9. Солнечная энергетика
17.10. Ветроэнергетика
17.11. Геотермальная энергетика
Контрольные вопросы
Литература для самостоятельного изучения

Гидравлическая энергия является возобновляемым источником энергии .

Территория, с которой стекает вода в реку, называется водосборным бассейном данной реки. Линия - а , б , в , г , д , проходящая по повышенным местам и отделяющая друг от друга соседние бассейны, называется водораздельной линией или водоразделителем (рис. 17.1).

К водосборному бассейну моря относятся водосборные бассейны всех рек, впадающих в данное море.

Количество воды, протекающей через поперечное сечение водотока в 1 с, называется расходом воды Q (м 3 /с или л/с).

Хронологический график изменения расходов воды во времени называется гидрографом . Строить гидрограф позволяют результаты регулярных измерений расходов воды в реке. Форма гидрографа зависит от типа питания реки (снеговое, дождевое, ледниковое и т.п.). На рис. 17.2 показан типичный гидрограф реки с преимущественно снеговым питанием. Гидрограф характеризуется максимальным , минимальным и средним значениями расхода воды за рассматриваемый период.

Суммарный объем воды, прошедший через поперечное сечение водотока от какого-либо начального момента времени t 0 до некоторого конечного t к, называется стоком W . При известном гидрографе сток определяется по следующим формулам (м 3 или км 3):

для непрерывной функции Q (t )

где Q i - средний расход в i -м интервале времени (i Î ).

Среднегодовой сток всех рек мира составляет 32 тыс. км 3 ; в табл. 17.1 приведены данные о речном стоке отдельных стран мира.

Запасы поверхностного стока по территории России распределены неравномерно, что весьма неблагоприятно для народного хозяйства, в том числе и для энергетики. Более 80 % речного стока российских рек приходится на еще мало освоенные территории бассейнов Северного Ледовитого и Тихого океанов.

Данные о речном стоке отдельных стран мира
Таблица 17.1 Страна Площадь территории, млн км 2 Суммарный средний многолетний объем стока, км 3 /год Удельная водность в среднем за год с 1 км 2 , л/с
Россия 17,075 7,4
Бразилия 8,51 11,9
США 9,36 9,8
Китай 9,90 8,3
Канада 9,98 24,0
Норвегия 0,32 35,8
Франция 0,551 19,7
Югославия 0,256 15,2
Польша 0,312 5,9


Особенностью стока реки является его неравномерное распределение как по годам, так и в течение года.

Многолетняя неравномерность стока неблагоприятна для всех отраслей народного хозяйства и прежде всего для энергетики. Различают: многоводные , средневодные и маловодные годы . В маловодные годы обычно значительно снижается выработка энергии на гидроэлектростанциях .

Неравномерность стока в течение года неблагоприятна для энергетики. Для большинства рек России маловодный период наблюдается зимой, когда потребность в электроэнергии наибольшая.

Механическая энергия речного стока (или гидравлическая энергия) может быть преобразована в электрическую посредством гидротурбин и генераторов.

В естественных условиях энергия водотока расходуется на преодоление внутреннего сопротивления движения воды, сопротивления на трение на стенках русла, размыв дна, берегов и т.п. Численные значения можем определить следующим образом. Водоток разбиваем на ряд участков, начиная от истока до устья. Определяем полную энергию потока жидкости в начальном Э 1 и конечном Э 2 створах участка. Теряемая на участке энергия будет равна разности Э 2 и Э 1

Для расчета принимается r = 1000 г/м 3 , g = 9,81 м/с 2 . Подставив расчетные значения r, g , Q 1-2 (м 3 /с) и Н 1-2 (м), получим мощность водотока, кВт:

(17.5)

Формулы (17.3 ) и (17.5) выражают потенциальную (теоретическую) выработку энергии и мощность на рассматриваемом участке водотока.

Суммируя потенциальные энергетические ресурсы по участкам водотока, получаем потенциальные энергетические ресурсы реки.

Аналогично получаем теоретические запасы гидроэнергии для региона, страны, континента, мира.

Гидроэнергетические ресурсы подразделяют на потенциальные (теоретические ), технические и экономические.

Потенциальные гидроэнергетические ресурсы - это теоретические запасы, определяемые по формуле

(17.6)

где Э - энергия, кВт · ч; Q i - средний годовой расход реки на i -м рассматриваемом участке, м 3 /с; H i - падение уровня реки на участке, м.

Они подсчитываются в предположении, что весь сток будет использован для выработки электроэнергии без потерь при преобразовании гидравлической энергии в электрическую, т.е. коэффициент полезного действия h = 1.

Мировые потенциальные гидроэнергетические ресурсы оцениваются в 35х10 3 млрд кВт · ч в год и 4000 ГВт среднегодовой мощности. Потенциальные ресурсы России составляют 2896 млрд кВт · ч при среднегодовой мощности 330 ГВт.

Технические гидроэнергетические ресурсы всегда меньше потенциальных, так как они учитывают потери:

· напоров - гидравлические в водоводах, бьефах, на неиспользуемых участках водотоков;

· расходов - испарение из водохранилищ, фильтрацию, холостые сбросы и т.п.;

· энергии в оборудовании.

Они характеризуют техническую возможность получения энергии на современном этапе.

Технические гидроэнергетические ресурсы России составляют 1670 млрд кВт · ч в год, в том числе по малым ГЭС - 382 млрд кВт · ч в год. Выработка электроэнергии на действующих ГЭС России в 2002 г. составила 170,4 млрд кВт · ч, в том числе на малых ГЭС - 2,2 млрд кВт · ч.

Экономические гидроэнергетические ресурсы - это часть технических ресурсов, которую по современным представлениям целесообразно использовать в обозримой перспективе. Они существенно зависят от прогресса в энергетике, удаленности ГЭС от места подключения к энергосистеме , обеспеченности рассматриваемого региона другими энергетическими ресурсами, их стоимостью, качеством и т.п. Экономические гидро­ энергетические ресурсы переменны во времени и зависят от многих изменяющихся факторов. В настоящее время в мире наблюдается тенденция роста оценки экономических гидроэнергетических ресурсов.

На тепловых электростанциях для получения энергии используют природный источник энергии, и является их основным ресурсом: на атомных электростанциях основным ресурсом является ядерное топливо, для гидроэлектростанций основным ресурсом является гидроэнергетические ресурсы.

Основные ресурсы тепловых электростанций

Приведем характеристику основных типов природного топлива.

Торф - геологически молодая среди топлива ископаемое. Образовался из накоплений болотных растений в условиях повышенной влажности и недостаточной аэрации. Торф - очень гидрофильная вещество. В процессе сушки объемная усадка достигает 50% первоначального объема. Но вода в торфе не только заполняет капилляры, она частично связана с ним. Это мешает сушке и препятствует механическому удалению влаги. Содержание углерода в торфе растет с повышением степени разложения растений. Зола торфа состоит, главным образом, с Са, Fe2О3, Ад2О3 и SiO2.

Уголь бурый - смесь в разной степени преобразованных остатков высших наземных растений, водорослей и организмов планктона. Содержание минеральных примесей (зольность) бурого угля более 30%, содержание влаги около 20%. От торфа, из которого оно образовалось, отличается большей однородностью и отсутствием остатков растений, не разложились. Основные буро-угольные бассейны Украины - Львовско-Волынский и Днепровский.

Уголь каменный - по запасам тепловой энергии, содержащейся в нем (вместе с близкими ему антрацитами), занимает основное место среди горючих ископаемых. Каменный уголь является одним из членов генетического ряда твердых горючих ископаемых: торф - бурый уголь - каменный уголь - антрацит. Содержание гигроскопической влаги в каменном угле снижается с ростом его метаморфизма от 7-9% до 0,2-0,4%.

Если зольность угля более 40%, то такой уголь называют топливными сланцами. Основные составляющие золы каменного угля - оксиды кремния, Fe, Al, встречаются некоторые редкие элементы - германий, ванадий, вольфрам, титан и драгоценные металлы - Au, Ag.

Основные каменноугольные бассейны Украины - Донецкий, Западный Донбасс и Южный Донбасс.

Нефть - топливная ископаемое, смесь углеводородов с другими органическими соединениями (сернистыми, азотистыми, кислородными). Нефть - важнейший источник жидкого топлива, а также сырья для химической промышленности. Мазут - остаток после отгона из нефти бензина и керосина.

Газы природные топливные - природные смеси углеводородов различного состава. По способу добычи подразделяются на:

Собственно природные газы, добываемые из чисто газовых месторождений, практически не содержат нефти;

Попутные газы, растворенные в нефти, добываемых вместе с ней;

В газы конденсатных месторождений;

Природное топливо классифицируется:

По агрегатному состоянию (твердые, жидкие, газообразные)

По происхождению (природные и искусственные, получаемые в процессе переработки природных - кокс, моторные топлива, газ коксовый и др.)

В золе топлива содержатся минимальные количества ванадия (0,001%) и натрия (0,0005%), которые являются основными коррозионными агентами. Для сравнения различных видов топлив принята условная единица - условное топливо - 1 т.уп = 7 106 ккал - 2,93 104МДж. Очевидно, что протекание процесса горения зависит как от свойств топлив, так и от организации самого процесса горения.

Свойства топлива определяются его химическим составом, топливной массой и балластом. Химический состав топлива принято записывать символами элементов: С, Н, O, N, S (табл.2.2). Для содержания золы и влаги приняты обозначения А и W. Индексы справа сверху показывают, к которому топлива относятся данные: г. - до рабочего топлива, с - к сухому, г - к горючей массы, в - в органической массы. Топливная масса - основные топливные составляющие: углерод (теплота сгорания 34,4 МДж / кг), водород (143 МДж / кг), сера (9,3 МДж / кг).

Таблица 2.2

Характеристики твердых и жидких топлив

Сера содержится в топливе в 3-х видах: органическая (в составе сложных соединений), колчеданная (в соединениях с Fe и другими металлами) и сульфатная.

Вещества, не сгорают, вместе с влагой топлива образуют балласт топлива. Минеральные примеси, характеризующие зольность, присутствующие в виде силикатов (кремнезем, глинозем, глина), сульфидов (Fe), карбонатов (Са, Mg, Fe), сульфатов (Са, Mg), оксидов металлов, фосфатов, хлоридов и других солей щелочных металлов в различных сочетаниях, характерных для различных месторождений.

Важнейшая характеристика топлива - теплота сгорания. Высшая теплота сгорания топлива - количество теплоты, выделяющейся в процессе полного сгорания твердого, жидкого или газообразного топлива, когда вся влага топлива переходит в продукты реакции горения. Низшая теплота сгорания меньше высшей на то количество тепла, которое затрачивается на испарение воды, образующейся в процессе сгорания топлива, а также влаги, содержащейся в нем.

Основные ресурсы атомных электростанций

Энергетически выгодными являются реакции синтеза легких ядер и деления тяжелых. В реакции синтеза ядер гелия из дейтерия

2Н + 2Н = 4 Не

выделяется 17,6 МэВ на каждый акт синтеза, дает энергию в 23,6 МВт / м сгоревшего дейтерия. Содержание дейтерия в природной водные 0,015% и 4 1013т в гидросфере Земли. Запасы безграничны, но нет управляемого синтеза, является взрывное протекания реакции в термоядерной (водородной) бомбы с инициированием реакции ядерным взрывом (Т ~ 10й К). Исследования по управляемому термоядерному синтезу велись в установках "токомак".

К тяжелым делящихся ядер, относятся природные изотопы 235U 232Th и искусственные 233U 239Рu и 241Pu. Единственный природный изотоп 235U, что делится под действием нейтронов любой энергии, называется первичным ядерным топливом, другие изотопы - вторичное ядерное топливо. Деление ядер урана сопровождается выделением около 200 МэВ в результате 1 реакции или 20 МВт / ч горючего.

Первая АЭС построена и запущена в СССР в г. Обнинске мощностью 5МВт в 1954 году. Это АЭС на тепловых (медленных) нейтронах. Ее действие основано на реакции

В процессе деления образуются вторичные нейтроны, вступают в новые реакции, поддерживая протекания цепной реакции деления ядер. Обломки, образующиеся неустойчивые и делятся сами к образованию устойчивого ядра. Такие реакторы используют примерно 1,5% энергии топлива. В процессе взаимодействия ядерного топлива с быстрыми нейтронами используется до 50% энергии топлива, одновременно создается искусственное ядерное топливо. Первая АЭС на быстрых нейтронах построена в 1973 году в М.Шевченко на Мангышлаке. В таком реакторе топливо используется медленнее, чем производится новое топливо (239Ры или 233U) (такой реактор называется реактор-размножитель или бридеров):

Для работы электростанции мощностью 1000 МВт в течение 1 суток нужно 750 Т угля, 400 т нефти или 250 г 235U.

Урановая руда состоит из трех изотопов: урана-233, -235, и - 238; и только уран-235 подходит как топливо для ядерных электростанций. В процессе производства энергетического топлива сначала в состав руды входит не более 0,7% урана-235. В процессе обогащения руды концентрация этого изотопа увеличивается до 90%.

Гидроэнергетические ресурсы

Гидроэнергетические ресурсы - это запасы потенциальной энергии речных потоков и водоемов. Технически целесообразными для использования на территории Украины могут быть гидроэнергетические ресурсы Днепра - 46%; Днестра и Тисы - по 20% и на все другие реки Украины - 14%. Особенно большое значение ГЭС Днепровского каскада имеют для водоснабжения маловодных районов Центра и Юга страны. В целом из ресурсов искусственных накопителей воды на Днепре обеспечивается 35% промышленной и коммунально-бытовой потребности страны.

Содержание статьи

ГИДРОЭНЕРГЕТИКА, использование энергии естественного движения, т.е. течения, водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды. До середины 19 в. для этого применялись водяные колеса, преобразующие энергию движущейся воды в механическую энергию вращающегося вала. Позднее появились более быстроходные и эффективные гидравлические турбины. До конца 19 в. энергия вращающегося вала использовалась непосредственно, например для размола зерна или для приведения в действие кузнечных мехов и молота. В наши дни практически вся механическая энергия, создаваемая гидравлическими турбинами, преобразуется в электроэнергию.

Почти вся гидравлическая энергия представляет собой одну из форм солнечной энергии и поэтому относится к возобновляемым природным энергоресурсам. Под лучами солнца испаряется вода из озер, рек и морей. Образуются облака, идет дождь, и вода в конце концов возвращается в водные бассейны, т.е. туда, откуда испарилась. С таким круговоротом воды в природе связаны колоссальные количества энергии. Географическая область умеренного климата высотой над уровнем моря около 2500 м и количеством осадков порядка 1000 мм/год теоретически могла бы непрерывно давать более 750 кВт с каждого квадратного километра площади. На самом деле можно использовать лишь малую долю всего количества осадков и лишь ничтожную долю высоты, с которой они стекают. Кроме того, обычно КПД современных гидротурбин и генераторов не превышает 86%. Тем не менее производительность гидроэлектростанций (ГЭС) в США составляет около 75 000 МВт, и по крайней мере еще 50 000 МВт можно получить дополнительно.

Гидроэнергетические ресурсы.

Уровень развития гидроэнергетики в разных странах и на разных континентах неодинаков. Больше всего гидроэлектроэнергии производят Соединенные Штаты, за ними идут Россия, Украина, Канада, Япония, Бразилия, КНР и Норвегия.

Неосвоенные гидроэнергетические ресурсы Африки, Азии и Южной Америки открывают широкие возможности строительства новых ГЭС. На Северную Америку, в распоряжении которой находится всего около 13% мировых ресурсов гидроэнергетики, приходится около 35% полной мощности действующих ГЭС. В то же время Африка (21% мировых гидроэнергетических ресурсов) и Азия (39%) вносят лишь 5 и 18% соответственно в мировую выработку гидроэлектроэнергии. Из остальных континентов Европа (21% ресурсов) дает 31% выработки, а Южная Америка и Австралия, вместе взятые, располагая примерно 15% ресурсов, дают только 11% производимой в мире гидроэлектроэнергии.

Плотины.

Вода, вращающая гидравлические турбины, обычно берется из искусственных водохранилищ, созданных путем перекрытия реки плотиной. Плотина повышает напор воды, поступающей на турбины, и тем самым увеличивает мощность электростанции. Расход воды из водохранилища через турбины можно регулировать. Водохранилище, кроме того, служит отстойником для песка, ила и мусора, приносимых естественными водотоками. Построив плотину с водохранилищем, можно предотвратить паводковые затопления, а также создать надежный запас воды для водоснабжения населения и промышленности.

Гидравлические турбины.

Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. (Паровые и газовые турбины – со многими венцами лопаток.) К лопастям первого венца относятся профилированные колонны статора и лопатки направляющего аппарата, причем последние обычно позволяют регулировать расход воды через турбину. Второй венец образуют лопасти рабочего колеса турбины. Два последовательных лопастных венца (статора и колеса) составляют ступень турбины. Таким образом, в гидротурбинах имеется только одна ступень.

Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. В гидроагрегатах приливной ГЭС, построенной в заливе Фанди (провинция Новая Шотландия, Канада), ротор генератора закреплен на периферии рабочего колеса, охватывая его. Такая конструкция генератора требует меньше железа и меди. Но чаще турбину располагают вертикально и выводят ее вал из пологого S-образного водяного канала через уплотнение к внешнему гидрогенератору.

Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Расчетный диапазон напора для горизонтальных осевых турбин составляет 3–15 м. Вертикальные осевые турбины используются при напорах от 5 до 30 м. Конструкцию поворотно-лопастных турбин предложил в 1910 австрийский инженер В.Каплан. Лопатки их направляющего аппарата поворачиваются на осях, параллельных валу, и турбина снабжена подводящей камерой, к которой подходит водовод.

При повышенных напорах (от 12 до 300 м) более предпочтительны радиально-осевые турбины, в которых вода, входя по радиусу, выходит в осевом направлении. Такие турбины существенно усовершенствовал американский инженер Дж.Френсис, начавший эксперименты с ними в каналах под Лоуэллом (шт. Массачусетс, США) в 1851. Радиально-осевые турбины обычно отличаются лопатками большого диаметра, жестко закрепленными на рабочем колесе, но направляющий аппарат в них такого же вида, как и в поворотно-лопастных турбинах.

Турбины для напоров, превышающих 300 м, совершенно иные, нежели описанные выше. В них имеются от одного до шести сопел кругового сечения, создающих водяные струи, которые падают на лопасти рабочего колеса. Расход воды регулируется перекрытием проходного сечения сопел. Рабочее колесо работает не под водой, как в осевой и радиально-осевой турбинах, а в воздухе. Высокоскоростная свободная водяная струя бьет в лопасть рабочего колеса, которая имеет форму двойного ковша. Конструкция ковшовой гидротурбины была предложена в 1878 и запатентована в 1880 американским инженером А.Пелтоном.

Ковшовая гидротурбина называется активной (свободноструйной), поскольку в соплах напор падает до нуля и сила, действующая на лопасти, создается ударом струи. Осевая же и радиально-осевая турбины относятся к реактивным (напороструйным), так как поток продолжает ускоряться в проходах между лопастями рабочего колеса и крутящий момент частично создается реакцией, ответственной за ускорение.

Гидрогенераторы.

Гидрогенераторы для ГЭС специально проектируются соответственно частоте вращения и мощностью гидротурбин, для которых они предназначаются. Гидрогенераторы на большую единичную мощность обычно устанавливают вертикально на подпятниках с соответствующими направляющими подшипниками. Они, как правило, трехфазные и рассчитаны на стандартную частоту. Система воздушного охлаждения – замкнутая, с теплообменниками воздух – вода. Предусматривается возбудитель.

Коэффициент нагрузки.

Немногие ГЭС все время работают на полной мощности. Иногда это невозможно из-за нехватки воды, а иногда лишено смысла из-за отсутствия нагрузки. Коэффициент нагрузки электростанции – это отношение средней потребляемой мощности за данный период к пиковой мощности в этот же период. При использовании накопительного водохранилища, в котором вода аккумулируется в часы пониженных нагрузок, ГЭС на водотоке, который годен для выработки лишь 10 МВт, может обслуживать нагрузку в 15–20 МВт, если коэффициент нагрузки лежит в пределах от 0,50 до 0,67. Это относится к отдельной ГЭС, самостоятельно обслуживающей свою нагрузку. Если же она включена в энергетическую систему, в которую входят и другие электростанции, то может быть переведена в режим с пиковой мощностью, значительно превышающей 20 МВт, но при меньшем коэффициенте нагрузки.

В энергетические системы, как правило, входят не только ГЭС. Если в системе имеются и тепловые электростанции (ТЭС), то ГЭС может работать по своему графику нагрузки, отличному от общего. От нее требуется, чтобы она приносила наибольшую пользу всей системе. Для этого ГЭС может, например, работать на максимально возможной мощности при имеющемся запасе воды, чтобы экономилось топливо, или же работать только в часы пиковой нагрузки системы, чтобы снизить требуемую мощность ТЭС и, следовательно, необходимые инвестиции на их сооружение и эксплуатацию.

Гидроаккумулирующие электростанции (ГАЭС).

В часы малых нагрузок гидроагрегаты ГАЭС перекачивают воду из низового водоема в верховой, а в часы повышенных – используют запасенную воду для выработки пиковой энергии. Работа в турбинном и насосном режимах обеспечивается обратимыми гидроагрегатами, состоящими из синхронной электрической машины и гидравлической насос-турбины.

На перекачку воды в верхний водоем из нижнего затрачивается иногда в полтора раза больше электроэнергии, чем затем из нее вырабатывается. Но это оправдано с точки зрения экономики энергетической системы. Дело в том, что энергию, затрачиваемую на перекачку, вырабатывают ТЭС энергетической системы в часы пониженной нагрузки, когда ее стоимость понижается. Таким образом дешевая «ночная» электроэнергия превращается в ценную «пиковую», что повышает экономическую эффективность системы в целом.

Преимущества ГАЭС состоят в том, что у них может быть повышенный напор, для них проще выбрать место сооружения и они требуют меньше воды (поскольку вода циркулирует между верхним и нижним водоемами). Благодаря повышенному напору можно использовать более крупные и эффективные гидрогенераторы. Но существуют и ГЭС смешанного типа (ГЭС – ГАЭС), на которых часть гидроагрегатов работает как в турбинном, так и в насосном режиме, а остальные – только в турбинном (за счет приточности к верхнему водоему). Такие электростанции часто позволяют накапливать больше воды и, следовательно, вырабатывать больше электроэнергии в более длительные периоды пиковой нагрузки, обеспечивая повышенную гибкость в работе.

Приливные электростанции (ПЭС).

Для создания экономичной приливной электростанции необходимо сочетание необычайно большого перепада уровней при приливе и отливе (6 м и более) с особенностями береговой линии, позволяющими создать плотину и водный бассейн соответствующих размеров. На Земле не так много мест, где выполняются эти условия: побережья штата Мэн (США) и провинции Нью-Брансуик (Канада), некоторые заливы Желтого моря, Персидский залив, Аляска, некоторые места Аргентины, юг Англии, север Франции, север европейской России и ряд заливов Австралии. Но даже в таких подходящих местах, как залив Пассамакуодди на границе штата Мэн и провинции Нью-Брансуик, ПЭС в настоящее время вряд ли могли бы по стоимости вырабатываемой электроэнергии конкурировать с современными ТЭС.

В проектах ПЭС обычно предусматривается создание двух бассейнов – верхового и низового – с водопропускными отверстиями и затворами. Верховой бассейн наполняется во время прилива, а затем опорожняется в низовой, опорожнившийся при отливе.

Гидроэнергетические ресурсы на Земле оцениваются величиной 33000 ТВт ч в год, но по техническим и экономическим соображениям из всех запасов доступны от 4 до 25%. Общий гидропотенциал рек России исчисляется в 4000 млн. МВт ч (450 тыс. МВт среднегодовой установленной мощности), что составляет приблизительно 10-12% от мирового.

В табл. 1.13 приводятся данные о гидроресурсах в различных странах мира.

Известно, что первоисточником гидроэнергии является солнечная энергия. Вода океанов и морей, испарясь под действием солнечной радиации, конденсируется в высоких слоях атмосферы в виде капелек, собирающихся в облака. Вода облаков падает в виде дождя в моря, океаны и на сушу или образует мощный снеговой покров гор. Дождевая вода дает начало рекам, питающимся подземными источниками. Круговорот воды в природе происходит под влиянием солнечной радиации , благодаря которой появляются начальные процессы круговорота - испарение воды и движение облаков. Таким образом, кинетическая энергия движущейся в реках воды есть, образно говоря, освобожденная энергия Солнца.

Гидроресурсы различных стран

Таблица 1.13

Страна

Мощность, ГВт

Страна

Мощность, ГВт

(обеспеченность - 50%)

минималь

расходах

воды

(обеспеченность - 95%)

при среднегодовых расходах воды

(обеспеченность - 50%)

минималь

расходах

воды

(обеспеченность - 95%)

Россия

Франция

Италия

Канада

Швейцария

Япония

Испания

Норвегия

Германия

Швеция

Англия

В отличие от невозобновляемой химической энергии, запасенной в органическом топливе, кинетическая энергия движущейся в реках воды возобновляема - на гидроэлектростанциях она превращается в электрическую энергию.

Свойство возобновляемости гидроэнергии является важным преимуществом ГЭС. К их преимуществам относятся также:

  • 1) небольшая стоимость эксплуатации и отсюда низкая себестоимость энергии, вырабатываемой на ГЭС;
  • 2) большая надежность работы, объясняемая отсутствием высоких температур и давлений в гидротурбинах и относительно невысокими скоростями вращения этих турбин и гидрогенераторов;
  • 3) высокая маневренность, определяемая небольшим временем, требующимся для включения в работу, набора нагрузки, а также останова ГЭС (это время составляет всего несколько минут).

Строительство ГЭС во многих случаях решает также задачи снабжения водой городов, промышленности и сельского хозяйства (орошение).

Работа ГЭС, в отличие от ТЭС, не ухудшает санитарного состояния воздушной среды и качество воды в водоемах. Недостатками ГЭС являются их более высокая стоимость и большой срок строительства в сравнении с ТЭС. Однако эти недостатки обычно компенсируются преимуществами ГЭС.

Энергия приливов и отливов. К использованию этих видов энергии в последнее время проявляется значительный интерес.

Наибольшей высоты приливы достигают в некоторых заливах и окраинных морях Атлантического океана - 14-18 м. В Тихом океане у побережья России максимальные приливы бывают в Пенжинской губе Охотского моря - 12,9 м. У берегов Кольского полуострова в Баренцевом море они не превышают 7 м, но в Белом море, в Мензенской губе, достигают 10 м. В окраинных морях Северного Ледовитого океана приливы не велики - 0,2-0,3 м, редко 0,5 м. Во внутренних морях - Средиземном, Балтийском, Черном - приливы почти незаметны.

Доступный для использования потенциал приливов в европейской части России оценивается в 40 млн. МВт (16 тыс. МВт среднегодовой установленной мощности), а на Дальнем Востоке - в 170 млн. МВт.

Течения и волнения в Мировом океане велики и чрезвычайно разнообразны. Скорости течений достигают высоких значений, например, у Гольфстрима - 2,57 м/с (9,2 км/ч) при глубине 700 м и ширине 30 км. Правда, чаще они не превышают нескольких сантиметров в секунду.

Максимальные параметры волнений: высота волн -15м, длина - 800 м, скорость - 38 м/с, период - 23 с. В толще вод возникают и внутренние волны, обнаруженные впервые Ф. Нансеном в 1902 г., амплитуда их - от 35 до 200 м. При амплитуде же в 1 м, ширине 5 м и скорости распространения 10 м/с энергия волны достигает 267 кВт. Отсюда видно, как велики запасы энергии в этих источниках энергии.

В настоящее время сооружено несколько мощных электростанций, использующих энергию приливов. Однако большая стоимость сооружения таких станций, трудности, связанные с неравномерностью их работы (пульсирующий характер выдачи мощности), не позволяют пока считать приливные станции достаточно эффективными, в связи с чем развитие их идет медленно. Общая мощность приливных волн оценивается в 2-3 ТВт, однако мощность приливов в местах, удобных для ее использования, значительно меньше.

Контрольные вопросы

  • 1. Перечислите основные возобновляемые и невозобновляемые энергетические ресурсы.
  • 2. Назовите элементарный состав твердого топлива и виды массы топлива.
  • 3. Что является основной характеристикой любого вида топлива?
  • 4. Что такое условное топливо?
  • 5. Назовите основной принцип получения тепловой энергии на атомных станциях.

Гидроэнергетические ресурсы обладают массой достоинств, благодаря которым именно в них и нуждается множество предприятий. Они выступают в роли достаточно дешевого источника энергии, который обладает способностью возобновляться. Такие ресурсы используются на гидроэлектростанциях, с их помощью происходит выработка электроэнергии. Для ее получения принято использовать разные способы и методы, но именно гидроэнергетика позволяет получить весомую часть электроэнергии, производимой во всем мире. Многих привлекают эти ресурсы благодаря их низкой себестоимости, они оказывают меньшее влияние на загрязнение и состояние окружающей среды.

Гидроэлектростанции нуждаются в постоянной модернизации и в совершенствовании, им необходимы инвестиции. Появляется необходимость в использовании новых агрегатов, замене турбин, в том, чтобы появились собственные очистные сооружения.

Гидроэнергетику принято относить к одной из самых развитых областей хозяйственной деятельности, которая позволяет трансформировать водные потоки в самую настоящую электрическую энергию. Исландия является той страной, в которой данная отрасль развита больше всего. Она одерживает пальму первенства по показателям выработки гидроэнергии. В ряде других стран гидроэнергетика также занимает солидное место. Например, в Швеции и в Канаде.

Эта отрасль обладает рядом своих достоинств и недостатков. Она позволяет получать очень дешевую электроэнергию, при этом производственная деятельность не сопровождается выбросами, которые очень вредны для окружающей среды. Подразумевается использование возобновляемой электроэнергии. От момента подключения станции до того момента, как она может начать работать на полную мощность, проходит совсем не много времени. Но когда происходят технологические процессы с использованием воды, следует обязательно подумать про системы водоподготовки. Они помогают очистить воду от разных примесей.

Среди недостатков отрасли гидроэнергетики можно выделить вероятность затопления пахотных земель, что может нанести немалый ущерб сельскому хозяйству. Нежелательно создавать такие конструкции на реках, которые располагаются в горах, ведь, как известно, такие районы отличаются сейсмичностью. Редко встречаются ГЭС на территории Африки и Южной Америки – там их развитие только начинается.